Thursday, July 1, 2021

Part 3 : Human Body's Cries For Water

 RHEUMATOID ARTHRITIS PAINS About  50  million  Americans  suffer  from  some  form  of arthritis, 30  million  people  suffer  from  low  back pain,  millions suffer  from  arthritic neck pains,  and  200,000  children  are  affected  by  the  juvenile  form  of arthritis. Once  any  of  these conditions establishes  in  an  individual, it  becomes a  sentence  for  suffering  during  the  rest  of  the  individual's life— unless  the  simplicity  of  the  root-cause  of  the  problem  is fully  understood. 

Initially, rheumatoid  arthritic  joints and  their  pain  are  to  be  viewed  as indicators  of  water  deficiency  in  the  affected joint cartilage  surfaces.  Arthritis pain  is  another  of  the  regional  thirst  signals of  the  body.  In  some  arthritis  pains,  salt shortage  may  be  a  contributing  factor. The  cartilage  surfaces of  bones  in  a  joint contain  much  water.  The  lubricating  property  of  this  "held  water"  is  utilized in  the  cartilage  allowing  the  two  opposing  surfaces  to  freely  glide  over one  another during  joint  movement. Whereas the  bone  cells  are  immersed  in  calcium  deposits,  the  cartilage  cells  are  immersed  in  a  matrix containing much  water. 

There are 360 joints in  the human bodyA joint is the point of attachment of two bones. Also, what are the 4 types of joints and examples? Planar, hinge, pivot, condyloid, saddle, and ball-and-socket are all types of synovial joints.

Diagrams of bones, see here


[ Finger joint.  Water hold in the cartilage of a joint is the lubricant that protects the contact surfaces of the joint. Artery enters bone through air tight hole. Details here.  Cartilage contact points, The joint capsule and the Areis, The bone marrow, Water reaches cartilage from the base through the bone marrow and tendons.] 

Figure 6: A schematic model of a hinge joint (found in the finger) its arterial supply, to the bone marrow, to its capsule,  and the direction of serum supplt to its cartilage contact points through the bone marrows.    Joints are places where bones meet. The body contains several different types of joint. Some joints have limited movements, such as those between the vertebrae, whereas others are more mobile, including the joints in the fingers and toes.

Hinge joints are those that allow movement along one plane. They facilitate bending and straightening actions, such as flexing a finger.

In a hinge joint, protective cartilage covers the bones, and a thick gel called synovial fluid lubricates them, allowing them to move without rubbing against one another. All hinge joints also contain muscles, ligaments, and other tissues that stabilize the joint.

Hinge joints are more stable than ball-and-socket joints, which include the shoulder and hip joints. However, ball-and-socket joints allow a greater range of movement along more than one plane.

The following body parts are hinge joints:

• elbow

• knee

• finger joints (interphalangeal joints)

• toe joints (interphalangeal joints)

• ankles (tibiotalar joint)

Click here for a 3D model of a hinge joint which is fully interactive. Explore the model using your mouse pad or touchscreen to understand more about hinge joints.

As the  cartilage  surfaces  glide  over  one  another,  some  exposed  cells die  and  peel  away. New  cells take  their  place from  the  growing  ends that  are  attached  to  the  bone  surfaces on  the  two  sides. In  a  well-hydrated  cartilage,  the  rate of  friction  damage  is  minimal.  In  a  dehydrated  cartilage,  the  rate  of  "abrasive"  damage  is increased.  The  ratio between  the  rate  of regeneration  of  cartilage  cells  to  their  "abrasive  peel" is the  index  of joint  efficiency. Actively  growing  blood  cells in  the  bone  marrow  take  priority  over  the  cartilage  for  the  available  water  that goes through  the  bone  structure.  In  the  process  of dilating  the  blood  vessels  to  bring  more  circulation  to  the  area, it  is possible  that  the  branch  that  goes through  a  tight  hole  in  the  bone  cannot  expand  adequately enough  to  cope;  the cells  that depend  on  these  vessels for  an  increased  water  and  nutrient  supply  are  under  a  physically  imposed rationing  control. Under  such  circumstances,  and  unless there  is blood  dilution  to  carry  more  water,  the  "serum" requirements  of the  cartilage  will  have  to  be  satisfied  from  the  blood  vessels  that feed  the  capsule  of  the  joint.  The nerve  regulated  shunting  mechanisms (to  all  the  joints) also  produce  signals  of pain. 

Initially, this pain  is  an  indication  that  the  joint is  not  fully  prepared  to  endure  pressure  until  it  is fully  hydrated.  This type  of  pain  has to  be  treated  with  a  regular  increase  in  water  intake  to  produce  some  dilution  of blood  that  is circulating  to  the  area  until  the  cartilage  is fully  hydrated  and  repaired  from  its  base  attachment  to  the  bone—the normal  bone  route  of  serum  diffusion  to  the  cartilage.  A look  at  Figures 6  and 7 will help make the points clear. It  is my  assumption  that the  swelling  and  pain  in  the  capsule  of  the  joint  is an  indication  there  is  dilation  and  edema from  the  vessels that  furnish  circulation  to  the  capsule  of the  joint.  Joint  surfaces have  nerve  endings that  regulate all functions.  When  they  place  a  demand  for more  blood  circulation  to  the  area  to  pick  up  water  from  the  serum,  the compensatory  vascular  expansion  in  the  capsule  is  supposed  to  make  up  for  the  inefficiency  of circulation  from  the bone  route  of supply. 

A well-hydrated and dehydrated joint - comparison . 

A dehydrated joint:

•Artery entering joint capsule, 

•Inflamed joint capsule oozing serum and white cells into the joint, 

• Damaged cartilage exposing bone, 

A well hydrated joint:

• Hydration of cartilage,

• Normal joint capsule and cartilage covering bone,

 Joint moverment causes vacuum to be created within the joint space. Water will be pulled through the bone and the cartilage into the joint cavity - if it is freely available. 

Figure 7:  A schematic model intended to show and compare side-by-side, a well hydrated joint to a dehydrated joint. The interior cartilage in a well hydrated joint gets its nutrition from the blood supply to its base attachment to the bone. A dehydrated joint will need to get some form of fluid circulation from the capsule of the joint, hence the swelling and tenderness in the joint capsule. The inflammatory areas may appear as if there is infection when there is only dehydation.]

 Because  dehydration  in  the  joint  surfaces  will  eventually  cause  severe  damage—to  the  point  of making  the  bone surfaces  bare  and  exposed  until osteoarthritis  becomes established—the  tissue  damage  will trigger  a  mechanism for  remodeling  of  the  joint  There  are  hormone-secreting  cells in  the  capsule  of  the  joint.  When  there  is  damage  (also from  dehydration),  injured  tissue  has to  be  repaired.  These  "local  remodeling  hormones"  take  over  and  restructure the  joint  surfaces. It  seems  that they cater to  the  lines  of  force  and  pressure  that  the  joints  have  to  endure. Unfortunately,  the  repair process seems to  produce  a  deviation  of  the  joints.  To  avoid  such  disfigurement,  one should  take  the  very  initial  pain  seriously  and  begin  a  strict  attention  to  daily  intake  of  water.  Initially,  this  pain  should be  recognized  as  a  sign  of  local  dehydration.  If  it  does not  disappear  after  a  few days  of  water  intake  and  repeated gentle  bending  of  the  joints  to  bring  more  circulation  to  the  area,  one  should  then  consult  a  professional  practitioner of  medicine. 

You  have  nothing  to  lose  and  everything  to  gain  by  recognizing  the  pain  and  the  non-infectious inflammation  of  a rheumatoid joint as a thirst signal in your body. You are probably showing other signals for water shortage in your body, but this particular site is indicating predisposition to a more severe local damage. 

If we understand the body to have difficulty in recognizing its thirst state, it is possible that this lower state of alertness is also inheritable by a child. It is possible that dehydration in a rapidly growing child might also indicate its presence by the pain felt in the joints as well as it can be felt in heartburn. The mode of signal production that would denote thirst might naturally be the same in the young, as well as in older people. It is therefore recommended that juvenile arthritis should also be treated with an increase in daily water intake. 

As you can see, Dr. Laurence Malone, whose letter is published below, is an experienced medical doctor and an educator. His observations on the effect of water in rheumatoid joint pains in himself shows that our other colleagues in the medical profession should begin to notice the medicinal values of water in disease prevention. 

Postscript 

The book is already in its printers' hands. A few recently introduced commercial brands of water, with seemingly scientific explanations about the specific way they are "manufactured," have prompted me to use the only available space on this page to clarify the following points. 

The corrective physiologic effects of ordinary "tap" water in some of the conditions explained in this book are being attributed to specially prepared brands of "structured water" that are presented for sale. As I already explained, water has many properties. It has special characteristics in the membranes and inside the cells of the body. 

However, if we simulate those characteristics outside the body, it does not mean that water will pass into the cells of the body with the same characteristics. In fact, the cell membrane filters and separates water from its solid content and frees it from other dissolved materials to manufacture free and useful activator before its passage inside the cell. It has developed the system that the water molecules have to be in "single file" before they can go through the membrane. Water diffuses into the cell at the rate of 10 centimeter per second. The dissolved substances stay behind, and their entrance into the cell is regulated by material-specific, sophisticated transport systems. This is how the body survives. It creates its own "uniformity of presentation" with constantly changing environmental factors. Please do not be impressed by titles and jargons. Begin to think before you accept seemingly scientific statements that are designed to sell you a product.

No comments:

Post a Comment