Saturday, July 3, 2021

Part 5 : Human Body's Cries For Water

 STRESS AND DEPRESSION 

"The  reasonable  man  adapts himself  to  the  world:  the  unreasonable  one  persists in  trying  to  adapt  the  world  to himself.  Therefore  all  progress  depends  on  the  unreasonable  man." - George  Bernard  Shaw

 A  state  of  depression  is said  to  exist  when  the  brain,  in  confronting  a  stressful emotional  problem, finds  it  difficult to cope  with  other  attention-demanding  actions  at  the  same  time.  This phenomenon  can  become  so  all-absorbing  as to  incapacitate  the  person. In  the  long  run, such  a  stressful  drain  on  brain  activity  can  produce  different manifestations that  are  labeled  according  to  the  person's outward  behavior  pattern. Ten  million  Americans are  said  to  be  suffering  from  one  form  or  another  of  such  conditions.  Infinitely  greater numbers  are  experiencing,  or  will at  one  time  or  another experience,  the  milder forms  of depression.  Some  form  of depression  is a  natural  phenomenon  in  the  process of  development  and  progress  of any  individual. It  is in  these states of  consuming  mental  activity  that  characters  are  developed  and  the  inner  mettle  of  the  individual  is forged. Naturally, coping  with  different aspects of  one's negative  feelings is  part and  parcel of  the  process.  Almost  always, the  state  of  depression  is a  passing  phenomenon  if love,  care,  and  empathy  are  available  to  nudge  the  individual  in the  direction  of a  resolution  of  negative  inner  thoughts.

 Unfortunately,  some  people  will  not be  able  to  cope  with  the  fear,  anxieties,  and  angers associated  with  depression. In  seeking  professional  help, they are  given  some  form  of  medication.  At  the  onset  of  chemical  treatment  of depression,  the  medications were  less harmful. Today, they are  very powerful  and  sometimes dangerous. Some form  of  them  will strip  from  those  treated  the  ability  to  emotionally  feel  for  themselves, as well as for  others.  Some  of these  medications  can  destroy  empathy  and  fix a  negative  idea  in  particularly vulnerable  persons.  They  may  more easily become  suicidal,  as well  as antisocial  and  homicidal. 

What  I  am  explaining  in  this chapter  is  the  reason  for the  inefficiency  of  the  physiology  associated  with  stress and depression.  What  I  propose  is the  way  to  increase  the  efficiency  of  brain  power  to  cope  with  extremely  severe emotional  stress  and  its outward  manifestations  of  depression.  I,  myself,  have  experienced,  and  have  observed  in many  others,  all  of  the  positive  aspects to  what I  am  proposing  to  you  readers.

 Pathology  that  is seen  to  be  associated  with  "social stresses"—fear,  anxiety,  insecurity,  persistent  emotional and matrimonial  problems—and  the  establishment of  depression  are  the  results of  water  deficiency  to  the  point  that  the water requirement  of  brain  tissue  is affected.  The  brain  uses electrical  energy  that  is  generated  by  the  water  drive  of the  energy-generating  pumps.  With  dehydration,  the  level  of  energy  generation  in  the  brain  is  decreased.  Many functions of  the  brain  that depend  on  this type  of  energy  become  inefficient.  We  recognize  this inadequacy  of function  and  call  it  depression.  This "depressive  state"  caused  by  dehydration  can  lead  to  chronic fatigue syndrome. This condition  is  a  label  put  on  a  series of  advanced  physiological problems that  are  seen  to  be  associated  with stress. 

If  we  understand  the  events that  take  place  in  stress, we  will  also  understand  chronic  fatigue  syndrome. In  any  case, after a  period  of  time  of  correcting  for  dehydration  and  its  metabolic complications,  chronic  fatigue  syndrome  will improve  beyond  recognition.  The  following  pages define  the  physiological  events and  the  possible  metabolic overrides  that can  lead  to  depletion  of  certain  body  reserves  that  may  be  the  basic  problem  in  chronic fatigue syndrome. 

THE INITIALLY  SILENT  COMPENSATION  MECHANISMS  ASSOCIATED WITH  DEHYDRATION 

When  the  body becomes  dehydrated,  the  physiological  processes that  will  establish  are  the  same  ones that  occur when  coping  with  stress. Dehydration  equals  stress,  and  once  stress  establishes,  there  is  an  associated mobilization  of primary  materials from  body  stores.  This  process  will  "mop  up"  some  of  the  water  reserves  of the body.  Consequently,  dehydration  causes stress,  and  stress  will cause  further  dehydration. In  stress,  several  hormonal  overrides become  operative.  The  body  assumes a  crisis  situation  and  will  begin  to mobilize  for  a  "fight or  flight"  response.  The  body  does not seem  to  recognize  the  social transformation of humans. It assesses all situations of Stress as though a "fight or flight" stance associated with work in an office. Several strong hormones become secreted and will remain "triggered" until the body gets out of its stressful circumstances. These homones are mainly endorphins, cortisone release factor, prolactin, vasopressin, and renin-angiotensin. to be maintained, even with stresses. 

Dehydration: The main destructive factor in stress

 The vicious circle and spiral. STRESS {to and from} DEHYDRATION

 Vasopressin, WOMEN, Endorphins, Cortisone, Renin - Angiotensin, Prolactin.

 Figure 9: A schematic presentation hormonal secretions during continued "spiral" of stress or chronic dehydration.

 ENDORPHINS, CORTISONE, PROLACTIN, AND VASOPRESSIN

 Endorphins prepare the body to endure hardship and injury until it gets out of danger. They also raise the pain threshold. With an injury that would have caused pain at a lower level, with the "umbrella" of endorphins, the body will be able to continue with its task. Because of childbirth and monthly menstruation, women seem to access this hormone much more readily. They generally have a greater ability to withstand pain and stress. 

Cortisone will initiate the remobilization of stored energies and raw materials. Fat is broken down into fatty acids to be converted into energy. Some proteins are once again broken down into the basic amino acids for the formation of extra neurotransmitters, new proteins, and some special amino acids to be burned by the muscles. During pregnancy and at the time of feeding milk to the child, this hormone and its "associates" will mobilize a uniform flow of primary materials for the purpose of offspring development. If the action of cortisone continues for long, soon there will be some selective depletion from the amino acid reserves of the body. 

Under the influence of cortisone, the body continues to "feed off itself." The effect of cortisone is designed to provide emergency raw materials for the production of most essential primary proteins and neurotransmitters-to get the body rover the hump." It is not designed for the continued breakdown of materials employed in the maintenance of the  structural/integrity  of  the  body.  It  is  this phenomenon  that produces the  damage  associated  with  stress, if  the "stressor"  maintains its  unabated  influence. 

Prolactin  will  make  sure  that  the  lactating  mother  will  continue  to  produce  milk. All  species  have  it.  Prolactin  will prime  the  gland  cells in  the  breast  to  continue  milk  production  even  if  there  is dehydration  or  stress that  will  cause dehydration.  It  will prime  the  gland  cells to  regenerate  and  increase  in  quantity. 

We should  remember  that although  we  concentrate  on  the  solid  composition  of  the  milk, it  is its  water  content  that  is of  primary importance  to  the  growing  fetus.  Every  time  a  cell gives rise  to  a  daughter  cell,  75  percent  or  more  of  its volume  has  to  be  filled  with  water. In  short,  growth  depends on  the  availability  of  water.  When  "water"  is  brought  to the  area, the  cells will  be  able  to  access its  other dissolved  contents.  This  hormone  is  also  made  in  the  placenta  and stored  in  the  amniotic fluid  surrounding  the  fetus.  In  short,  this  hormone  has a  "mamotrophic"  action.  It  makes the breast  glands and  their  ducts  grow.  Growth  hormone  has much  similarity  to  prolactin. They  have  similar  actions, except  that  prolactin  mainly  targets  the  organs  of  reproduction. 

It  has been  shown  in  mice  that  increased  prolactin  production  will  cause  mammary  tumors. In  1987,1  proposed  in my guest  lecture  address of  an  internationally  gathered  select  group  of  cancer  researchers that  chronic  dehydration in  the  human  body  is a  primary  causative  factor  for tumor  production. The  relationship  between  stress,  agedependent  chronic dehydration,  persistent  prolactin  secretion,  and  cancer  transformation  of  the  glandular  tissue  in the  breast  should  not  be  overlooked.  A regular  adjustment  to  the  daily  water  intake  in  women—particularly  when confronting  stresses  of  everyday  life—will at  least serve  as a  preventive  measure  against  possible  development  of stress-induced  breast  cancer  in  the  age  group  of  women  predisposed  to  this problem  and  prostate  cancer  in  men. Vasopressin  regulates  the  selective  flow of  water into  some  cells  of  the  body.  It  also  causes  a  constriction  of  the capillaries it activates.  As  its  name  implies,  it causes vaso-constriction.  It is  produced  in  the  pituitary gland  and secreted  into  the  circulation. While  it  may constrict blood  vessels,  some  vital cells  possess  receiving  points (receptors)  for  this  hormone.  Depending  on  the  hierarchy of  their  importance,  some  cells  seem  to  possess  more vasopressin  receptors than  others.

 The  cell  membrane—the  protective  covering  of  cell  architecture—  is naturally  designed  in  two  layers.  Tuning-forklike  solid  hydrocarbon  "bricks"  are  held  together  by  the  adhesive  property of  water (see  Figure  14,  page  85).  In between  the  two  layers there  is a  connecting  passageway  where  enzymes travel,  selectively  react  together,  and cause  a  desired  action  within  the  cell.  This waterway  works very much  like  a  moat  or  "beltway,"  except  that  it  is a water-filled  "beltway"  and  everything  has to  float  in  it. 

When  there  is  sufficient  water  to  fill  all  the  spaces,  the  moat  gets  filled  and  water  will  also  get  into  the  cell.  There may come  a  time  when  the  rate  of  water  flow  into  the  cell may  not  be  sufficient,  and  some  of  the  cell  functions may become  affected.  To  safeguard  against  such  a  possible  catastrophic  situation,  nature  has designed  a  magnificent mechanism  for  the  creation  of  water  filters  through  the  membrane.  When  vasopressin  hormone  reaches the  cell membrane  and  fuses with  its specially  designed  receptor, the  receptor  converts  to  a  "shower  head"  structure  and makes possible  filtration  of  only  water  through  its holes. 

The  important  cells manufacture  the  vasopressin  receptor in  greater  quantity.  Vasopressin  is  one  of  the  hormones involved  in  the  rationing  and  distribution  of water  according  to  a  priority  plan  when  there  is  dehydration. Nerve  cells seem  to  exercise  their  priority  by  manufacturing  more  vasopressin  receptors than  other  tissue  cells.  They  need  to keep  the  waterways  in  their  nerves fully  functional  To  make  sure  the  water can  pass through  these  tiny  holes (which only allow the  passage  of  one  water  molecule  at  a  time), vasopressin  also  has  the  property  of  causing vasoconstriction  and  putting  a  squeeze  on  the  fluid  volume  in  the  region. 

Thus,  the  hypertensive  property  of  the  neurotransmitter vasopressin—better  known  as a  hormone—is  needed  to bring  about  a  steady  filtration  of water  into  the  cells,  only  when  the  free  flow  and  direct  diffusion  of  water  through  the cell  membrane  is  insufficient.

  Figure  10  is designed  to  explain  this  mechanism.  For more  information  on  the  cell membrane,  read  the  section  on  cholesterol. 

Water filtration through cell membranes. 

A single nerve cell : The cell's long nerve,  with many branches of fine connecting nerves. 

A microscopic segment of nerve cell membrane:  Vasopressin homone and its receptor,  Water molecules only antering the cells,  The receptor converts to a 'shower head' and filters only water molecutes into the cell.

 Figure 10: A schematic model of a nerve cell, its bilayer membrane, and the vasopressin receptor that converts into a "shower-head" structure and allows for the filtered water from the serum to enter the cells that have the receptor. Vasopressin also produces vasoconstriction, which puts a squeeze on the blood volume to produce the pressure for water filiration reverse osmosis. 

ALCOHOL 

Alcohol will suppress the secretion of vasopressin from the pituitary gland. Lack of vasopressin in circulation will translate to general dehydration of the body-even in the brain cells. Now, a previously slight and easier-to-adjust-to dehydration will translate to a very severe drought in the "sensitive cells" of the brain. To cope with this "stress," more of the various hormones are secreted, including the body's own addictive endorphins. 

Thus, prolonged use of alcohol may be instrumental in promoting addictive tendencies to endorphin secretion in the body- triggering the secretion of excess endorphins. Women, because of their natural tendency to increased endorphin production to cope with childbirth and their monthly menstruation, seem to become addicted to alcohol more readily than men. It seems that women become addicted to alcohol in about three years compared to men, who may become compulsive drinkers in about seven years.

 Figures 10 and 11 will explain some of the possible contributory factors to the development of chronic fatigue syndrome during an expanding chronic dehydration. It can occur from the regular intake of caffeine-containing and alcoholic beverages in place of water. Vasopressin receptor is naturally designed to keep the waterways in the nerve systems fully topped upNaturally, in dehydration is drastically reduced. 

In severe dehydration, produced by the habitual intake of alcohol and caffeine, when water has to be urgently pumped into the "waterways" in the nerves, more blood circulation has to be brought alongside the nerves. The process will involve the release of histamine from the cells in the lining that cover the nerves. This will, at some point, cause an "inflammatory" situation that will eventually damage the lining of the nerves in the vicinity-at a pace faster than they can be repaired. The outward manifestations of such a "regional" process have been labeled as different nerve disorders, including multiple sclerosis (MS). Now, their prevention and treatment become clear. I have seen it work in MS. See John Kuna's letter on page 70.  

The transport system in the nerves 

the nerve system, the energy and volition to do new work,  A typical "telephone cable',  A nerve cut across, nerve, A single nerve microtubules, The area of water drainage, Areas of lower viscosity around microtubes, vessels,  The monorail microtube that drains the water in the vicinity, The transporter protein .


Nerve Cross-section Structure

Nerve Cross-section Structure

In this image, you will find nerve cross section, nerve fibers, fascicle, endoneurium, blood vessel, perineurium, epineurium, unmyelinated nerve fiber, myelinated nerve fiber, spine nerve in Nerve cross-section structure.

Figure 11: A schematic model to demonstrate the mechanism of "float" transport within lesser viscosity microstream flow systems that become established around "monorail" type structures called microtubules-particularly along the length of nerves. 

RENIN-ANGIOTENSIN SYSTEM 

Renin-Angiotensin (RA) system activity (see Figure 12) is a subordinate mechanism to histamine activation in the brain. The RA system is also recognized to be very strongly active in the kidneys. This system is activated when the fluid volume of the body is diminished. It is activated to retain water, and to do so, it also promotes the absorption of more salt. In either water or sodium depletion of the body, the RA system becomes very active. 

Until water and sodium content of the body reach a preset level, the RA system also brings about the tightening of the capillary bed and the vascular system. It is designed to do this so there is no "slack" and empty space in the circulation system. This tightening can reach such a level that it becomes measurable, and we call it hypertension. You think a reading of 200 points is high? I have seen the blood pressure of a man without prior history of hypertension reach a level of 300 millimeters of mercury, 300 points, when he was arrested and taken to one of the Iranian political prisons to be shot. 

The reason for this tightening of the blood vessels during stress is simple to understand. The body is a highly integrated and efficient complex multi-system. When there is stress, some of the available water is used for the breakdown of stored materials, such as proteins, starch (glycogen) and fat. To compensate for the lost water and to put the system into a squeeze, the RA system will also coordinate work with vasopressin and other hormones. 

The kidneys are the main site of RA system activity. The kidneys are responsible for urine production and the excretion of excess hydrogen, potassium, sodium, and waste materials. All of these functions have to be maintained proportionate to the sufficient availability of water to be used to make urine. It is true the kidneys have the ability to concentrate the urine. However, this ability is not to be used to its extreme at all times, or it will eventually produce kidney damage. 

Renin-Angiatensin Activity : Blood volume falls;  Blood pressure falls; Sodlium (salt) depletion; these three lead to → Renin activation promotes angioansin production, in turn leads to → Water Intake; Vasoconstriction; Sodium retention; these will lead to →Inhibit renin-angiotensin activity after normal levels are reached. 

Figure 12: A model of physiological events that will either stimulate or inhibit renin-angiotensin production. 

The RA system is the pivotal mechanism for the restoration of fluid volume in the body. It is one of the subordinate mechanisms to histamine activity for water intake. It regulates the vascular bed to adjust for the fluid content of the circulation system. Its activity is decreased by the presence of more salt and water to fill the fluid capacity of the vascular bed. In the kidneys, it senses the fluid flow and the filtration pressure for its urine-making system. If the filtration pressure is not adequate for urine filtration and secretion, the RA system will tighten the blood vessels in this organ. 

When the kidneys are damaged and urine production is insufficient, the RA system is more active. It promotes more salt intake and induces more thirst. Kidney damage may be the consequence of long-term dehydration and salt depletion that had triggered the RA system activity in the first place. But we have not in the past recognized the significance of the vascular tightening (essential hypertension) as an indicator of body's fluid loss. Now, insufficient fluid balance in the body may have to be considered as the primary factor in some cases of renal damage—to the point of needing kidney replacement. Once the RA system is turned fully ON, it continues its expanding pace until a natural switching system could turn it off. The components of the natural OFF switch are WATER and some SALTin that order—until the measurable vascular tightening indicates a normal range. 

The salivary glands seem to have the ability to sense salt shortage in the body. When there is sodium shortage, they seem to produce substances called kinins. Kinins promote added blood circulation and increased saliva formation in the salivary glands. This increased saliva formation (possibly to the extent that it would flow out of the mouth) serves two purposes: One, it lubricates the mouth during food intake in a dehydrated state of the body; two, its alkaline consistency and copious flow will assist in food breakdown and its eventual evacuation from the stomach. Within the integrated systems of the human body, the kinins of the salivary gland seem to also trigger activation of the RA system that will begin to influence all parts of the body. 

Thus, sodium (salt) shortage in the body (which would also contribute to devastating water shortage outside of cells) could initiate a series of events that would ultimately produce essential hypertension and chronic pains in humans. The relationship of the salivary kinins to sodium depletion (salt depletion causes body water content loss) and ample saliva production, even if the body is fairly dehydrated, is the paradox in the natural design of the human body. It exposes the grossest error in considering the "dry mouth" as the sole indicator of water shortage in humans! Because of this very simple error, the practice of medicine and scientific research are light years off course. Much backtracking and revision to the already adopted views will be unavoidable. Let us hope "self protection" will not be an obstacle in the way! 

What happens if we drink tea, coffee, or colas in place of water? Natural stimulants in coffee and tea are larger quantities of caffeine and lesser amounts of theophylline (theafelin). These are central nervous system stimulants; at the same time, they are dehydrating agents because of their strong diuretic action on the kidneys. One cup of coffee contains about 85 milligrams of caffeine, and one cup of tea contains about 50 milligrams of caffeine. Cola drinks contain about 50 milligrams of caffeine, part of which is added to standardize the recipe when extracting the active substances from the nuts of Cok accuminata

These central nervous system stimulants liberate energy from the ATP storage pool and convert ATP to its burnt stage of cyclic AMP in the cells—at certain levels a strong inhibitory agent. They also release energy from liberation of calcium from its stored form in the cells. Thus, caffeine seems to act in an energy releasing capacity in the body. We all know about this final effect of caffeine; what we should also know is its override effect when the body does not wish to release energy for a certain action. In this way, the action of some hormones and transmitters will not be limited at a later time because of a possible lower level of stored energy. Caffeine will cause an override effect until a lower level of energy storage is reached. Cola drinks have exactly the same effect. 

The effect of caffeine may at times be considered desirable, but constant substituting of caffeine-containing drinks for water will deprive the body of its full capacity for the formation of hydroelectric energy. Excess caffeine will also deplete the ATP-stored energy in the brain and the body—a possible contributing factor for shorter attention span in the younger, cola-consuming generation, or chronic fatigue syndrome as a result of excess coffee consumption In later life. Excess caffeine intake will eventually exhaust the heart muscle because of its over-stimulation. Recently, in some experimental models, it has been shown that caffeine inhibits a most important enzyme system— PDE (phos-pho-di-esterase)—that is involved in the process of learning and memory development. In reported experiments, caffeine impaired vision and memory components of the learning ability in the species involved in the experiment. 

You must now realize why people with Alzheimer's dispase and children with learning disability should not drink anything other than water. Definitely no caffeine-containing beverages should be consumed. 

Let us now connect all the information in this chapter with two different but related problems: hypertension and cholesterol formation—both leading to heart problems. 

The operating mechanism for adaptation to dehydration, which will climax into vasoconstriction, are the same as mentioned for stress. Namely, the continued actions of vasopressin and the RA system are responsible for establishing the necessary adaptation to drought. They close a number of open capillaries in the vascular bed and increase the pressure/in the rest to squeeze water through the membranes into the cells in "priority organs." Do not forget: Dehydration is the number one stressor of the human body—or any living matter. 

No comments: