Friday, July 9, 2021

Part 9 : Human Body's Cries For Water

 SOME  METABOLIC ASPECTS  OF  STRESS AND DEHYDRATION 

"I firmly believe  that  if  the  entire  materia  medico  as  now  used  could  be  sunk to  the  bottom  of the  sea,  it  would  be  all the  better  for  mankind—and  all the  -worse  for  the  fishes." ~  Oliver  Wendell  Holmes 

INSULIN-INDEPENDENT  DIABETES 

Basically, there  are  two  types of  diabetes.  For the  treatment  of  one, insulin  is needed  because  the  pancreas  no longer  manufactures insulin.  This  type  is  called  insulin-dependent  diabetes.  For the  treatment  of  the other,  some chemicals  are  needed  that  can  gradually  release  insulin  from  the  pancreas so  the  diabetic  can  control  the  clinical symptoms.  This type  is called  insulin-independent  diabetes;  the  pancreas  still has the  ability  to  manufacture  insulin. Insulin-independent diabetes,  established  in  the  elderly  and  which  can  be  regulated  by  the  intake  of  "tablet" forms of medication,  is most  probably  the  end  result  of brain  water-deficiency,  to  the  point  that its neurotransmitter systems— particularly  the  serotonergic  system—is  being  affected.  The  physiology of  the  brain  is  designed  in  such  a  way  that it automatically  begins to  peg-up  the  glucose  threshold  so  that  it  can  maintain  its own  volume  and  its  own  energy requirements.  The  brain  needs glucose  for its energy  value  and  its metabolic conversion  to  water. The  prevalent consensus of  opinion  is that  the  bulk  of  energy  requirement in  the  brain  is provided  by  sugar  alone.  My  personal view is that  this  is only  the  case  if  there  is water and  salt  shortage  in  the  body.  Water  and  salt  are  absolutely essential for  the  generation  of  hydroelectric energy,  particularly  for  neurotransmission  mechanisms. 

The  reason  and  the  mechanism  for altering  blood  sugar levels  is quite  simple.  When  histamine  becomes active  in water regulation  and  energy  management,  it  also  activates  a  group  of  substances  known  as prostaglandins  (PGs). PGs are  involved  in  a  subordinate  system  for  rationed  distribution  of  water to  the  cells  in  the  body. 

The  pancreas—a  very  complex gland  located  between  the  stomach  and  the  duodenum—other  than  being  the  seat of  insulin  manufacture  is engaged  in  the  production  of  copious quantities  of a  bicarbonate-containing  watery solution.  This bicarbonate  solution  is  emptied  into  the  duodenum  to  neutralize  acid  coming  from  the  stomach.  This is  how the  acid  from  the  stomach  is neutralized.  It happens that  while  the  stimulating  agent,  PG of  the  E type, may be  involved  in  shunting  circulation  to  the  pancreas  so  that  the  watery  bicarbonate  solution  can  be  made,  at  the  same time  it naturally  inhibits  the  secretion  of  insulin  from  the  pancreas.  It  acts  like  a  very  tightly  operated  servomechanism.  The  more  one  system  has  to  be  served,  the  more  the  other  system  will be  decommissioned. 

Why?  Simply, insulin  promotes  movement  of  potassium  and  sugar  into  the  cells of  the  body.  It also  promotes entry of  some  amino  acids  into  cells.  Accompanying  the  passage  of  sugar,  potassium, and  amino  acids,  water  will  also pass  into  the  cell that  has  been  stimulated  by  insulin. Such  action  will  automatically reduce  the  available  water that is more easily accessible from outside the cells. In a dehydrated state, the action of insulin would be counterproductive. The logic employed in the design of the body has therefore installed the two actions of water distribution to the pancreas and the needed inhibition of insulin action in the same agent—prostaglandin E. In this way, and at the expense of severe deprivation of some cells, water is made available for the act of food digestion and acid neutralization in the intestines. As it happens, when insulin secretion is inhibited, except for the brain, the metabolism of the body is severely disrupted. In a dehydrated state, the brain benefits from insulin. The brain cell  is not dependent on insulin for its functions While cells in most other parts of the body are totally dependent on the properties of insulin for their normal function. If we think about it, there is a natural logic to the ultimate production of insulin-independent diabetes in severe chronic dehydration. Why is it called insulin-independent diabetes? Because the body can still manufacture insulin, although it takes the influence of some chemical agents to promote its secretion. 

This phenomenon of insulin inhibition with dehydration shows that the primary function of the pancreatic gland is directed at the provision of water for food digestion. Insulin inhibition is an adaptation process of the gland to the dehydration of the body. 

TRYPTOPHAN AND DIABETES 

Even the simplest explanation on tryptophan may seem too complicated. However, some very basic understanding about this amino acid must be provided to make sense of some of the statements that are presented in this book Remember, the body is a very complex chemical plant that is extremely sensitive to fluctuations in the flow of its primary raw materials. 

The brain is designed to resuscitate itself, when there is water and salt shortage in the body. It raises the levels of sugar in circulation. The raised level of sugar is supposed to balance the vital osmotic equilibrium, in the same way that a doctor resuscitates a patient by the use of sugar and salt-containing intravenous fluid drips. One also needs to recognize another simple point: Osmotic forces that must be available for extracellular fluid volume regulation are developed primarily by its salt content, by its raised sugar content, and sometimes by its increased uric acid content. But in insulin-dependent type of diabetes, there may be severe salt shortage, in which case the brain has no alternative but to raise the level of sugar even more to compensate for the low salt reserves in the body. This process is an automatic step in the design of the brain activity that is master-managed by the various direct, and indirect, functions of tryptophan. It has also been shown that tryptophan is the basic substance that the body needs as a vital ingredient to convert into the three or even four most essential neurotransmitters so far recognized. 

In insulin-independent diabetes, one needs to pay particular attention to adequate protein intake to make up for the possible tryptophan insufficiency that may be the root cause of the disease. Why? It seems that dehydration causes a severe depletion of brain tryptophan, a most essential amino acid in the human body. When there is adequate amount of tryptophan in the brain, among its other effects, the pain threshold is raised—one endures pain better. »Tryptophan content in the brain shows a great drop in its levels in some diabetic animals. 

To stress this point again, salt, sugar, and uric acid are involved in balancing the osmotic forces of fluid composition held outside the cells. Salt content is responsible for the greatest contribution to the extracellular osmotic balance. Regulatory properties of tryptophan itself, or its dependent neurotransmission systems, operate a measuring mechanism for the amount of salt that is kept in the body. Serotonin, tryptamine, melatonin, and indolamine are derived from tryptophan, and all are neurotransmitters. Thus, tryptophan is the natural brain regulator for salt absorption in the body. It seems that lower levels of tryptophan—and in consequence, its neurotransmitter products —will establish lower-than-normal salt reserves. 

As a back-up mechanism in the body, the RA system seems to compensate by inducing salt retention in the body. Histamine and its RA system activity become increasingly engaged if the tryptophan-dependent neurotransmitter systems become less involved—through shortage or increased breakdown of tryptophan. It follows that a low-salt diet is not conducive to the correction of a diabetic's high blood sugar.

 • If the blood sugar is to come down, a slight upward adjustment of daily salt intake may become unavoidable. Tryptophan is also a most prominent amino acid employed in the correction of errors in the process of DNA "printout" or replica production. With another amino acid, lysine, they form a bridging system (lysine-tryptophanlysine tripod) that cuts and splices the inaccuracies in DNA transcription. This property of tryptophan is most essential to prevention of cancer cell development in the body

With the brain's tryptophan replenishment, the histamine-operated systems will be trimmed down to their primary responsibilities—unexaggerated functions. Salt content of the body will be better regulated. The sensation level before registering pain stimulus will be raised. Acid secretion in the stomach will come under normal control. Blood pressure will be normalized to its natural levels for the operation of all functions in the body: kidneys, brain, liver, lungs, gastrointestinal digestive activities, "shower-head" filtration of water into the nerve cells, the joints, and so on will function within their normal range of activity. 

There is a direct relationship between walking and the build-up of the brain tryptophan reserves. There are several amino acids that compete for crossing the naturally designed barrier system into the brain. They all have to "piggyback" on the same transporter proteins. These competitors to tryptophan are grouped under the title of branched-chain amino acids (BC amino acids). During exercise, these BC amino acids, along with the fats, are used as fuel in the larger muscles. Muscles begin to pick up these amino acids from the circulating blood. As a result, the odds  are  changed  in  favor  of  tryptophan  for  its  passage  across the  blood-brain-barrier  and  into  the  brain.  One  major physiological  value  to  exercising  is the  direct relationship  of  muscle  activity  to  the  build-up  of  the  brain  tryptophan reserves. 

•  The  brain tryptophan content,  and its various  by-product neurotransmitter  systems,  are responsible  for maintenance  of  the  "homeostatic balance  of  the  body."  Normal  levels  of  tryptophan  in  the  brain  maintain  a  wellregulated  balance  in  all  functions  of the  body—what  is meant by homeostasis.  With  a  decrease  in  tryptophan  supply to  the  brain, there  is a  proportionate  decrease  in  the  efficiency  of  all  functions in  the  body.

 Depression  and  some  mental disorders are  the  consequence  of  brain  tryptophan  imbalance. Prozac used  in  some mental  disorders,  particularly in  depression,  is  a  drug  that  stops the  enzymes that  break  down  serotonin,  a byproduct of  tryptophan.  When  more  serotonin  is  present,  all  nerves  function  normally. However,  Prozac cannot replace  the  indispensable  role  of  tryptophan  itself.  One  has to  work  at replenishing  body reserves of  tryptophan through  a  balanced  diet  and  regular water  intake. 

My research  has shown  there  is a  direct  relationship  between water intake—hemodilution—and  efficiency of function  in  the  transport system  for  the  passage  of  tryptophan  into  the  brain.  Water shortage  and  proportionate histamine  release  bring  about  an  increase  in  the  rate  of tryptophan  breakdown  in  the  liver. It  seems  that adequate water intake  arrests  the  increased  and  inefficient  metabolism  of tryptophan  in  the  body.  Chronic dehydration  causes its loss from  the  pool  of  different  amino  acids held  in  the  body.  Tryptophan  cannot be  manufactured  in  the  body;  it must be  imported  through  food  intake.  It  is one  of  the  essential  amino  acids.  Thus, hydration  of  the  body, exercise and  the  intake  of right  foods  help  replenish  brain  tryptophan  reserves. 

Another  most  important  fact  to  remember  is the  idiosyncrasies that  seem  to  operate  in  protein  metabolism  and  their manufacture. Proteins are  manufactured  from  joining  amino  acids  together.  There  are  20  amino  acids (AAs)  from which  different  proteins are  made.  Each  protein  has  a  different  mix of  these  AAs.  Depending  on  the  sequence  of  the mix,  different  characteristics are  installed  in  each  protein.  Depending  on  the  sequence  and  the  number,  the  mix  can function  as enzymes,  as assembly  lines  for  the  manufacture  of other  proteins, and  as energy  generators in  the hydroelectric pump  units. 

All  functions of  the  body  are  regulated  by  the  special  properties and  the  "sequence  characteristics"  of  its AAs used in  enzymes and  body  proteins.  There  are  eight  essential  AAs  that  are  not manufactured  in  the  human  body;  they must be  imported  from  food  intake.  There  are  three  AAs  that  can  be  manufactured  but  in  limited  quantities.  At certain  times,  they  also  become  partially  scarce.  The  other  nine  AAs are  amply  manufactured  within  the  body.  If  the normal  percentages  held  in  the  reserve  pool  of  AAs  in  the  body  begins to  fluctuate  beyond  a  certain  range,  some AAs are  dumped  (differently  broken  or  consumed)  to  keep  the  composition  of  the  AA pool  within  the  normal range for  future  protein  and  enzyme  manufacture.  Of  the  AAs  that get  dumped  in  stress,  tryptophan  seems  to  be  one  of the  most  important

However,  one  can  not  consume  this or  that amino  acid  by  itself to  balance  the  pool,  even  if  one  knew all  the  intricate ramifications.  One must consume the full range of AAs to build the "reserve pool" in due time. The  precaution  one can  take  is to  eat  proteins  that have  these  AAs  in  ample  proportions.  Some  proteins,  such  as  long-exposed  meat, may become  deficient  in  some  amino  acids.  The  best  proteins are  those  stored  in  the  germinating  seeds of  plants, such  as lentils,  grains,  beans,  etc.—also  in  eggs  and  milk  that  nature  provides to  produce  the  next generation  of chickens  and  to  feed  the  calf. 

Lentils and  green  beans in  particular  are  good  stores  for  AAs  in  food  ingredients.  They  contain  about  28  percent proteins,  72  percent  complex carbohydrates, and  no  oil.  These  types  of  foods  are  by  nature  better  stores for provision  of AAs in  proportioned  amounts.  After  all, these  better  choice  of "foods" are  naturally  designed  to procreate  a  "perfect"  replica  of  the  species concerned.  The  storage  of  a  balanced  amino  acid  composition  as a  life starter  is part  of  the  process. 

Insulin-independent diabetes should  be  treated  with  an  increase  in  water  intake, exercise,  and  diet  manipulation  to provide  the  necessary amino  acid  balance  for  tissue  repair,  including  brain  tissue  requirements.  Salt  regulation should  also  be  kept  in  mind.  Diabetes is a  good  example  of the  next-generation  damage  that  is caused  by dehydration.  Whereas the  onset of  dehydration-induced  diabetes is  normally  seen  in  the  elderly  and  it is  often reversible, the  more  serious  and  structurally  damaging  variety  of  the  disease  is often  inherited  by the  offspring. Juvenile  diabetes will  need  the  same  approach  to  its  early  preventive  treatment  before  permanent  structural damage  can  take  place.  It should  be  remembered  that the  genetic  transcription  mechanism  of the  parents—in particular  the  mother—if  affected  by  amino  acid  pool  imbalance,  will  be  equally  represented  in  the  offspring.  In effect,  this  is how  genetic damage  and  inherited  disorders establish.  What  you  will  read  in  the  next  few  paragraphs is  designed  to  show  a  representative  process. 

INSULIN-DEPENDENT DIABETES 

In  insulin-dependent  diabetes,  the  ability  to  produce  insulin  by  pancreatic cells is  lost.  To  control  diabetes,  actual injections  of insulin  on  a  regular  daily  basis are  essential.  This  condition  is becoming  slightly better  understood. Within  the  process of  protein  breakdown  to  mobilize  the  amino  acid  reserves,  cortisone-releasing  mechanisms also promote  the  secretion  of  a  substance  called  IL-1  (interleukin).  There  is a  magnifying  effect between  cortisone release  mechanisms  and  IL-1  production;  each  promotes the  secretion  of  the  other.  IL-1  also  promotes  the secretion  of  another  subordinate  substance  called  IL-6.  Thus, continued  IL-1  production  will  drive  a  simultaneous promotion  of  IL-6  production. It  has been  shown  in  cell  cultures  that  IL-6  destroys the  DNA structure  of  insulin-producing  cells.  These  IL-6  treated cells  can  not  produce  any  more  insulin. I  assume  (and  have  published  this view)  that  continued  dehydration  and  its unchecked  disturbance  of  the  amino  acid  metabolism  in  the  body  is most  probably  responsible  for  the  destruction  of DNA  structure  in  the  pancreas' insulin-producing  beta  cells. Thus,  dehydration  and  its promotion  of  stress  physiology  may ultimately  also  be responsible  for  the  emergence  of  insulin-dependent diabetes. 

Hence,  the  paradigm shift  can  scientifically  explain  the role of water  in disease prevention and/or their  cure.  With strict  and  absolutely regular  daily water  intake  to  prevent  the  stresses  and  associated  damages  of  dehydration, the chief  conductor  and  supervisor  of  the  body's well-being—tryptophan  and  its neurotransmitter  derivatives,  serotonin, tryptamine  and  melatonin—will  be  well-positioned  to  regulate  all  functions.  A  balanced  amino  acid  intake  in  simple proteins  will make  sure  enough  of  all  of  them  is  made  available  to  the  body.  Regular  daily walks will  keep  muscles well-coordinated  and  correct any physiological  processes that  are  established  in  the  body as a  result  of  anxiety and emotional  "stress." 

•The above three musts are the most vital and basic anti-aging precautions. They are essential steps to very good health  and  a  well  hydrated  and  healthy  skin  that  needs water to  constantly  replace  that  which  it loses to  the  outside environment.  That  is when  blood  vessels to  the  face  and  the  body  will  open  up  and  provide  necessary  nourishment for  exposed  skin  cells. 

When  the  body is well  hydrated, all of  the  physiological and  hormonal  prerequisites  to  a  satisfying  sex life  and  morethan-adequate  libido  will  be  in  place.  In  addition,  one  or  two  glasses of  water  before  "the  event"  will  help  in  achieving a  firmer  and  sustained  erection  in  men  and  the  joys of  participation  in  women.

No comments: