Wednesday, August 8, 2018



In September 1987, I was asked to deliver the guest lecture at a select cancer conference and workshop, because I had introduced a new understanding to this major health problem of our society. I scientifically explained why chronic unintentional dehydration is, in my view, the primary cause of pain and disease in the 
human body, including cancer. I explained that dehydration produces a drastic system disturbance in the physiology of the body and causes four major disruptions that ultimately and collectively allow for cancer formation and the invasive growth of the new tissue. My lecture was published in the September-October 1987 issue of the Journal of Anticancer Research. You can retrieve this article from my Web site Further scientific information is available in my article “Neurotransmitter Histamine: An Alternative Viewpoint,” which was presented at the Third Interscience World Conference on Inflammation in 1989. In September 2002, I was invited for the second time to highlight my understanding of dehydration and cancer formation in the body at the Thirty-first Annual Cancer Control Society Conference in Los Angeles. 

The detailed explanations are too complicated for the scope of this book, but the highlights are as follows: 
Persistent dehydration causes a multi-system dysfunction in the entire physiology of the body, including: 

1. DNA damage in the cell nucleus 

2. Inefficiency and eventual loss of DNA repair system inside the cells 

3. Cell receptor abnormalities and loss of balancing processes of the hormonal control systems

4. General immune system suppression, even at the level of the bone marrow, causing lack of ability to recognize abnormal cells, the inability to destroy them, and loss of the filter system for removal of abnormal and primitive genes from the time-refined and sophisticated gene pool in the body. 

In short, dehydration will gradually cause the body to lose its edge against the disruptive cascade of chemical combinations that constitute makeshift processes until the body gets back to its normal pattern of chemistry. You see, the body is a chemical refinery; it is the outcome of a most sophisticated pattern of chemical reactions that depend on the adequate presence of water and, naturally, other food-contained ingredients. If you shortchange it the water it needs to maintain efficiency and run the myriad chemical formulas every second of every minute of life, you cause the creation of new chemical pathways that produce pain, disease, and premature death. Cancer formation is the outcome of a series of such chemical formulas and pathways to early death. Four of these primary pathways have been mentioned above. 

The relationship of dehydration and DNA damage is easy to understand. Every cell has the tendency to produce some highly acidic by-products from its chemical reactions. Water has the job of washing these acidic elements out of the cell and taking them to the liver and the kidneys to be processed. When there is not enough water to circulate to these cells, the acid the cells produce will gradually and eventually erode the fine and detailed transcription patterns in the DNA repertoire stored in the cell nucleus. In time, the erosions can become permanent and disruptive, causing aberrant cells with the power to reproduce. These types of cells are more primitive and are locked into uncontrollable reproductive patterns. 

For the benefit of those who want the scientific knowledge, in these cells the protein kinase C of normal cells gets converted to protein kinase M, which is an autonomous and unstoppable smaller enzyme that continues to stimulate cell reproduction without regard for boundary limitations. This is why cancer cells develop bulky masses and lumps that encroach on the adjacent tissues and interfere with the tissues' normal functions. 

The DNA repair system is complex, and many different mechanisms are involved. One of these involves a small enzyme that has been discovered to cut and splice faulty DNA replications and correct the mistake. The enzyme is composed of 
lysine-tryptophan-lysine, discovered by Claude Helene, who published his findings in 1985. As has been explained, dehydration causes a drastic run on the tryptophan reserves of the body. Not only may the body be short of tryptophan, but the delivery of the amino acid to the microscopically dehydrated areas may also be a contributing factor and may affect the quality-control mechanisms for the DNA replication process. 

Protein kinase enzymes are involved in manufacturing new proteins inside the cells. Proteases are a class of proteins that enzymatically break down already made proteins for their recycling process. This balancing process is going on in all the cells of the body all the time. If you exercise, you activate the enzymes for making new muscles. If you do not exercise, you activate the enzymes that break down already made muscles. In either case, water and the materials it normally transports play a major positive—or, if water and the materials are lacking, negative—role in this balancing process.

Dehydration has another impact on these enzymes. The protease activity and protein breakdown inside the cells become dominant in persistent dehydration. The cells produce fewer and fewer cell membrane receptors that would keep up communication with the physiological commands from different hormones in the body. The process is called receptor down-regulation. At a certain level of protease activity, the new class of protein-manufacturing enzyme known as protein kinase M, which is more befitting primitive cell functions, becomes produced. It is this enzyme that drives the cell into incessant reproduction. If you want more information on this topic, you can review my article “Receptor Down-Regulation” on

What is down-regulation of receptors?
The complementary process that involves increases of such components is called up-regulation. An example of down-regulation is the cellular decrease in the number of receptors to a molecule, such as a hormone or neurotransmitter, which reduces the cell's sensitivity to the molecule.

Unfortunately, medical experts in cancer research have not understood the immune system suppression caused by persistent dehydration. It has not been realized that histamine can directly and indirectly suppress the immune system. When histamine is engaged in the drought-management programs of the body, it suppresses its own direct influence on the immune system, even at the bone marrow level. This is an essential process; the role of histamine in drought management could otherwise constantly flare up the immune system. As it happens, this safe-guard may become ineffective and give rise to conditions known as lymphomas,  myelomas, and leukemia. 

The way excess histamine activity in persistent dehydration inhibits the immune system is simple. All the white cells in the body have histamine receptors. There are two major groups of white cells that are engaged in the immune system control mechanisms. They are known as helper cell and suppressor cell lymphocytes. 

There are twice as many suppressor cells in the bone marrow as there are helper cells. As their designation implies, the suppressor cells are there to inhibit any bone marrow manufacturing process. This is how inhibition of the role of the normal bone marrow activity within the immune system needs of the body is brought 
about, when the body is dehydrated.

Another major inhibitory effect of dehydration on the immune system is the role of vasopressin as a strong cortisone release factor. With increased cortisone activity, two things take place. First, more interleukin-1, a chemical produced by some white cells, is produced. Second, this chemical accentuates tissue breakdown for the release of raw materials from the protein reserves of the body. It also accentuates the action of cortisone in the inhibition of interleukin-2 and interferon production. These two elements are vital for efficient defensive functions of the immune system. They prime the cells that are on the forefront of the battle against 
infections, foreign agents, and aberrant cells that do not conform with the normal tissues of the body—such as cancer cells. 

The function of interferon is crucial to the immune system. It causes a local release of hydrogen peroxide and ozone, which kill bacteria and cancer cells. 

Scientists have for years tried to manufacture interferon for use in cancer treatment. What has been produced commercially has not worked as effectively as the natural form. Naturally, they did not realize that dehydration, and its other immune system impacts, should also be taken into consideration. 

With this explanation on the direct impact of dehydration on tissue transformation and cancer production in the body, I am convinced that water is the best naturally preventive, and curative, cancer medication in the world. If you have any doubts about this, you can refer to my published scientific articles now posted on the Web site

When we wish to use water to help with cancers, we also need to provide the body with the right ingredients to correct the metabolic complications that have placed a depleting run on its raw material reserves. We also need to make sure that the body chemistry is directed toward a more alkaline state. Cancer cells are produced when the body becomes more and more acidic. Cancer cells are somewhat anaerobic; they do not like oxygen. In fact, oxygen is said to kill cancer cells. When water is available and brings with it all the defending agents and the needed ingredients, it also brings oxygen to the cancer cells. This is another reason why water is 
a good cancer medication. 

For more information, take a look at my DVD or video Health Miracles in Water and Salt. (click here for the video.)


No comments: